Robust bioinspired graphene-based nanocomposites via synergistic toughening of zinc ions and covalent bonding

نویسندگان

  • Shanshan Gong
  • Lei Jiang
  • Qunfeng Cheng
چکیده

Robust graphene-based nanocomposites show promising applications in fields of flexible, wearable and intelligent devices. But, it is still a big challenge to construct high performance macroscopic graphene-based nanocomposites for practical application through cost-efficient graphene oxide (GO) nanosheets. Inspired by the hierarchical layered structure and interfacial interactions of nacre, we demonstrated robust graphene-based nanocomposites via synergistic interfacial interactions, which are constructed via divalent ions of zinc (Zn), and linear molecules of 10,12-pentacosadiyn-1-ol (PCDO) with GO nanosheets. The synergistic interfacial interactions result in integrated high strength, toughness and fatigue life. Furthermore, the resultant bioinspired graphene-based nanocomposites (BGBNs) also possess high electrical conductivity. The extraordinary performance allows this kind of BGBN to be potentially utilized in aerospace, flexible electrodes of supercapacitors and other intelligent devices. The demonstration of synergistic interfacial interactions of ionic and covalent bonding also supplies an effective approach for building robust graphene-based nanocomposites in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated Ternary Bioinspired Nanocomposites via Synergistic Toughening of Reduced Graphene Oxide and Double-Walled Carbon Nanotubes.

With its synergistic toughening effect and hierarchical micro/nanoscale structure, natural nacre sets a "gold standard" for nacre-inspired materials with integrated high strength and toughness. We demonstrated strong and tough ternary bioinspired nanocomposites through synergistic toughening of reduced graphene oxide and double-walled carbon nanotube (DWNT) and covalent bonding. The tensile str...

متن کامل

Ultrastrong Bioinspired Graphene-Based Fibers via Synergistic Toughening.

Ultrastrong bioinspired graphene-based fibers are designed and prepared via synergistic toughening of ionic and covalent bonding. The tensile strength reaches up to 842.6 MPa and is superior to all other reported graphene-based fibers. In addition, its electrical conductivity is as high as 292.4 S cm(-1). This bioinspired synergistic toughening strategy supplies new insight toward the construct...

متن کامل

Bioinspired Ternary Artificial Nacre Nanocomposites Based on Reduced Graphene Oxide and Nanofibrillar Cellulose.

Inspired by the nacre, we demonstrated the integrated ternary artificial nacre nanocomposites through synergistic toughening of graphene oxide (GO) and nanofibrillar cellulose (NFC). In addition, the covalent bonding was introduced between adjacent GO nanosheets. The synergistic toughening effects from building blocks of one-dimensional NFC and two-dimensional GO, interface interactions of hydr...

متن کامل

Super-tough artificial nacre based on graphene oxide via synergistic interface interactions of - stacking and hydrogen bonding

Inspired by interfacial interactions of protein matrix and the crystal platelets in nacre, herein, a supertough artificial nacre was produced through constructing the synergistic interface interactions of p-p interaction and hydrogen bonding between graphene oxide (GO) nanosheets and sulfonated styreneethylene/butylene-styrene copolymer synthesized with multifunctional benzene. The resultant GO...

متن کامل

Noncovalently functionalized carbon fiber by grafted self-assembled graphene oxide and the synergistic effect on polymeric shape memory nanocomposites

This paper presents an effective approach to significantly improve the electrical properties and recovery performance of shape memory polymer (SMP) nanocomposites that are able for Joule heating triggered shape recovery. Reduced graphene oxide (GO) is self-assembled and grafted onto the carbon fibers to enhance the interfacial bonding with the SMP matrix via van der Waals and covalent crosslink...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016